ANALYSIS ON AEROELASTICITY AND THERMAL LOADING OF A ROCKET FIN: EFFECTS OF THICKNESS REDUCTION AND BRACKET SUPPORT
DOI:
https://doi.org/10.36563/thyktz72Keywords:
aeroelasticity, fin, thermal analysis, bracket, rocketAbstract
Rocket fins serve to stabilize a rocket during flight but are prone to flutter, necessitating an aeroelastic analysis to determine their susceptibility. This study presents the effect of bracket models' inclusion in a computational aeroelastic analysis on a supersonic fin, and the effect on thermal loading of a supersonic fin resulting from a reduction of fin thickness from 25 mm to 12 mm. Using finite element models and the P–K method, flutter onsets were identified at Mach 11.0 for the bracket-free fin and Mach 10.6 for the fin with brackets, both values substantially exceeding the required design criterion of Mach 3.99. These results show that the inclusion of bracket models has only a marginal effect on aeroelastic behavior, while the thinner fin maintains structural stability. Thermal analyses further revealed that the 12-mm fin experiences lower surface temperatures than the 25-mm fin, possibly due to its smaller leading edge’s inclination angle. Future investigations should expand on structural loading scenarios to ensure comprehensive design validation.
Downloads
References
ANSYS, Inc. (2018). System Coupling User’s Guide.
Bramsiepe, K., Voß, A., & Klimmek, T. (2020). Design and sizing of an aeroelastic composite model for a flying wing configuration with maneuver, gust, and landing loads. CEAS Aeronautical Journal, 11, 677-691.
Cavallo, T., Zappino, E., & Carrera, E. (2017). Component-wise vibration analysis of stiffened plates accounting for stiffener modes. CEAS Aeronautical Journal, 8, 385-412.
Cestino, E., Frulla, G., Spina, M., Catelani, D., & Linari, M. (2019). Numerical simulation and experimental validation of slender wings flutter behaviour. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(16).
Chen, F., Liu, H., & Zhang, S. (2018). Time-adaptive loosely coupled analysis on fluid–thermal–structural behaviors of hypersonic wing structures under sustained aeroheating. Aerospace Science and Technology, 78, 620-636.
Chen, G., Chen, W., Ji, L., Gao, T., & Lu, S. (2025). Trajectory-based flow-thermal-structural coupling analysis for hypersonic vehicles. Physics of Fluids, 37.
Chen, P.-C., & Liu, D.D. (1985). A Harmonic Gradient Method for Unsteady Supersonic Flow Calculations. Journal of Aircraft, 22.
Crotty, B. J. (1998). F-117A Accident during Air Show Flyover Caused by Omission of Fasteners in Wing-support Structure. Flight Safety Foundation Aviation Mechanics Bulletin, 46(5).
Ekadj, F. F., Nirbito, W., Hasim, F., Andika, M. G., Putro, I. E., & Mariani, L. (in press). Toward a Lightweight High-Speed Fin: Structural and Flutter Analysis for Thickness Reduction. Aviation.
Hancock, G. J., Wright, J. R., & Simpson, A. (1985). On the teaching of the principles of wing flexure-torsion flutter. The Aeronautical Journal, 89, 285-305.
Hexagon AB. (2021). MSC FlightLoads 2021.4 User’s Guide.
Jones, W. P. (1948). Supersonic Theory for Oscillating Wings of Any Plan Form. British Aeronautical Research Council R&M 2655.
Ju, Q. & Qin, S. (2009). New Improved g Method for Flutter Solution. Journal of Aircraft, 46.
Khan, S. A, Aabid, A., Mokashi, I., Al-Robaian, A. A., & Alsagri, A. S. (2019). Optimization of Two-dimensional Wedge Flow Field at Supersonic Mach Number. CFD Letters, 11(5), 80-97.
Kuzenov, V. V., Ryzhkov, S. V., & Varaksin, A. Y. (2022). Calculation of Heat Transfer and Drag Coefficients for Aircraft Geometric Models. Applied Sciences, 12.
Martins, P. C. O., De Paula, A. S., Carneiro, S. H. S., & Rade, D. A. (2022). Hybrid control technique applied to an aero-servo-viscoelastic simplified wing model. Aerospace Science and Technology, 122.
Mazzoni, J. A., Filho, J. B. P., & Machado, H. A. (2005). Aerodynamic Heating on VSB-30 Sounding Rocket. Proceedings of COBEM.
Melhem, G. N., Bandyopadhyay, S., & Sorrell, C. C. (2014). Aerospace Fasteners in Mechanical and Structural Applications. Annals of Materials Science & Engineering, 1(4).
Niblett, L. T. (1988). A guide to classical flutter. The Aeronautical Journal, 92, 339-355.
Rheinfurth, M. H., & Swift, F. W. (1966). A New Approach to the Explanation of the Flutter Mechanism. NASA-TN-D-3125.
Rodden, W., Harder, R., & Bellinger, E. (1979). Aeroelastic Addition to NASTRAN. NASA CR-3094.
Salleh, Z., Hamid, A. H. A., Adnan, A. A., Muhammad, M. A., & Gwozdz, S. (2024). The Effects of Fin Cant Angle and Fin Height on the Performance of a Low Altitude Rocket. International Journal of Integrated Engineering, 16, 300-310.
Simmons, J., Deleon, A., Black, J., Swenson, E., & Sauter, L. (2009). Aeroelastic Analysis and Optimization of FalconLAUNCH Sounding Rocket Fins. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition.
Syamsuar, S., Sampurno, B., Mahasti, K.M., Pratama, M.B.S., Sasongko, T.W., Kartika, N., Suksmono, A., Saputro, M.I.A., & Eskayudha, D.B. (2018). Half Wing N219 Aircraft Model Clean Configuration for Flutter Test On Low Speed Wind Tunnel. Journal of Physics: Conference Series, 1005(1).
Ujjin, R., Chaikiandee, S., & Ngaongam, C. (2021). Low Altitude Local Rocket Aerodynamics Analysis and Experimental Testing. 2nd Innovation Aviation & Aerospace Industry - International Conference.
Ognjanović, O. V., Maksimović, S. M.,Vidanović, N. D., Šegan, S. D., & Kastratović, G. M. (2017). Numerical Aerodynamic-Thermal-Structural Analyses of Missile Fin Configuration During Supersonic Flight Conditions. Thermal Science, 21, 3037-3049.
Volkov, K. (2022). High-Temperature Effects on Supersonic Flow around a Wedge.
Wang, W., Qian, W., Bai, Y., & Wang, K. (2023). Numerical studies on the thermal-fluid-structure coupling analysis method of hypersonic flight vehicle. Thermal Science and Engineering Progress, 40.
Wemming, H., Lindström, S. B., Johansson, L., & Kapidžić, Z. (2023). Modelling and experimental parameter identification for fasteners in composite-aluminium bolted structures. Composite Structures, 323.
White, Frank M. (1999). Fluid mechanics. WCB McGraw-Hill.
Wolff, M., Abada, H.H., & Saad, H. A. K. (2024). Numerical Investigation of Supersonic Flow over a Wedge by Solving 2D Euler Equations Utilizing the Steger–Warming Flux Vector Splitting (FVS) Scheme.
Yang, Z., Li, J., Zhang, L., Tian, X., & Jiang, Y. Behaviors of Hypersonic Wing under Aerodynamic Heating. Journal of Aerospace Engineering, 34.
Zhiqiang, W., Nan, Y., Guoshu, L., & Chao, Y. Two-Way-Coupling Method for Rapid Aerothermoelastic Anlayses of Hypersonic Wings. Transactions of Nanjing University of Aeronautics and Astronautics, 35, 135-145.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
