IMPLEMENTATION OF A REAL-TIME COMMUNICATION SYSTEM FOR HUMANOID ROBOTS USING THE GROUPSYNC FEATURE IN DYNAMIXEL PROTOCOL 2.0
DOI:
https://doi.org/10.36563/33p5je28Keywords:
humanoid robot, real-time communication, Dynamixel Protocol 2.0, synchronization, GroupSyncAbstract
This study presents the implementation of a real-time communication system for humanoid robots using the GroupSync feature of Dynamixel Protocol 2.0. The purpose of this research is to enhance synchronization accuracy and reduce communication latency in multi-actuator control systems for humanoid dance robots. The proposed system integrates a Raspberry Pi 5 controller with a Dynamixel U2D2 bridge to coordinate multiple Dynamixel XM-430 and XL-320 actuators through RS-485 and TTL buses. The experiment was conducted through thirty test iterations to evaluate latency, communication stability, and synchronization precision. The results demonstrate that the system achieved an average transmission delay of less than 150 microseconds and reduced latency by up to 47% compared to standard synchronous methods. Furthermore, actuator synchronization maintained temporal precision within ±0.3 milliseconds, ensuring smooth and rhythmically consistent movements. These findings confirm that GroupSync-based communication effectively enhances data transmission efficiency and deterministic timing in humanoid robots. The research contributes a modular communication framework that can be adapted for other multi-actuator systems, offering a practical approach to improving real-time robotic performance and coordination.
Downloads
References
Abrar, A., Teknik Elektro, J., & Negeri Balikpapan, P. (2020). Rancang Bangun IoT Robotic Car Menggunakan Raspberry Pi dan Python. Jurnal Sains Terapan, 6, 33–38.
Adil, A. A., Sakhrieh, S., Mounsef, J., & Maalouf, N. (2025). A multi-robot collaborative manipulation framework for dynamic and obstacle-dense environments: integration of deep learning for real-time task execution. Frontiers in Robotics and AI, 12. https://doi.org/10.3389/frobt.2025.1585544
Al-Obaidi, A. Sh. M., Al-Qassar, A., Nasser, A. R., Alkhayyat, A., Humaidi, A. J., & Ibraheem, I. K. (2021). Embedded Design and Implementation of Mobile Robot for Surveillance Applications. Indonesian Journal of Science and Technology, 6(2), 427–440. https://doi.org/10.17509/ijost.v6i2.36275
Bestmann, M., Güldenstein, J., & Zhang, J. (2019). High-Frequency Multi Bus Servo and Sensor Communication Using the Dynamixel Protocol. http://robocup.informatik.uni-hamburg.de
Bharadwaj, S., Gonabattula, K., Saha, S., Sarkar, C., & Raja, R. (2021). Concurrent Transmission for Multi-Robot Coordination. http://arxiv.org/abs/2112.00273
Callari, T. C., Curzi, Y., & Lohse, N. (2025). Realising human-robot collaboration in manufacturing? A journey towards industry 5.0 amid organisational paradoxical tensions. Technological Forecasting and Social Change, 219. https://doi.org/10.1016/j.techfore.2025.124249
Cheng, X., Ji, Y., Chen, J., Yang, R., Yang, G., Wang, X., & San Diego, U. (2024). Expressive Whole-Body Control for Humanoid Robots. In Robotics: Science and Systems. https://expressive-humanoid.github.io/.
Farajiparvar, P., Ying, H., & Pandya, A. (2020). A Brief Survey of Telerobotic Time Delay Mitigation. In Frontiers in Robotics and AI (Vol. 7). Frontiers Media S.A. https://doi.org/10.3389/frobt.2020.578805
Gerez, L., Chang, C. M., & Liarokapis, M. (2020). Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers. Frontiers in Robotics and AI, 7. https://doi.org/10.3389/frobt.2020.601274
Gomez-Quispe, J. M., Pérez-Zuñiga, G., Arce, D., Urbina, F., Gibaja, S., Paredes, R., & Cuellar, F. (2023). Non Linear Control System for Humanoid Robot to Perform Body Language Movements. Sensors, 23(1). https://doi.org/10.3390/s23010552
Haramaki, T., Yatsuda, A., & Nishino, H. (2020). A Broadcast Control System of Humanoid Robot by Wireless Marionette Style.
Jeong, J., Yang, J., Christmann, G. H. G., & Baltes, J. (2023). Lightweight mechatronic system for humanoid robot. Knowledge Engineering Review, 38(2). https://doi.org/10.1017/S026988892300005X
Lau, M. C., Anderson, J., & Baltes, J. (2025). Integrating humanoid robots with human musicians for synchronized musical performances. PeerJ Computer Science, 11. https://doi.org/10.7717/PEERJ-CS.2632
Laviers, A. (2025). Robots and Dance: A Promising Young Alchemy. Robotics, and Autonomous Systems Annu. Rev. Control Robot. Auton. Syst. 2025, 55, 31. https://doi.org/10.1146/annurev-control-060923
Liu, M., Zhang, J., & Shang, M. (2022). Real-time cooperative kinematic control for multiple robots in distributed scenarios with dynamic neural networks. Neurocomputing, 491, 621–632. https://doi.org/10.1016/j.neucom.2021.12.038
Rakita, D., Mutlu, B., & Gleicher, M. (2020). Effects of onset latency and robot speed delays on mimicry-control teleoperation. ACM/IEEE International Conference on Human-Robot Interaction, 519–527. https://doi.org/10.1145/3319502.3374838
ROBOTIS Co., Ltd. (2025, November 7). DYNAMIXEL Protocol 2.0. https://emanual.robotis.com/docs/en/dxl/protocol2/
Satria, N., Binugroho, E., Chairussy, R., Basuki, D., & Nobelia, B. (2023). The Development of Dance Movement in Humanoid Robot Dancing ERISA. 626–632. https://doi.org/10.5220/0010950100003260
Tong, Y., Liu, H., & Zhang, Z. (2024). Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects. IEEE/CAA Journal of Automatica Sinica, 11(2), 301–328. https://doi.org/10.1109/JAS.2023.124140
Wang, Z., Chen, M., & Liu, Q. (2025). A review on multimodal communications for human-robot collaboration in 5G: from visual to tactile. In Intelligence and Robotics (Vol. 5, Issue 3, pp. 579–606). OAE Publishing Inc. https://doi.org/10.20517/ir.2025.30
Wen, S., Min, J., Yu, Z., Li, Y., Liu, X., & Karimi, H. R. (2025). Multiple Population Genetic Algorithm-Based Inverse Kinematics Solution for a 6-DOF Manipulator. Journal of Field Robotics, 42(7), 3440–3453. https://doi.org/10.1002/rob.22585
Zalta, A., Large, E. W., Schön, D., & Morillon, B. (2024). Neural dynamics of predictive timing and motor engagement in music listening. In Sci. Adv (Vol. 10). https://www.science.org
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
